Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G261-G279, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597710

RESUMO

The small intestine has a remarkable ability to enhance its absorptive and digestive surface area through the formation of villi, a process known as villification. We sought to learn whether developing mouse and human tissue-engineered small intestine (TESI) followed known developmental biology routes to villification, such as Sonic hedgehog (SHH)/Indian hedgehog (IHH) and bone morphogenetic protein 4 (BMP4)/forkhead box F1 (FOXF1) signaling to identify targets to enhance the development of TESI. After generating TESI from prenatal and postnatal stem cell sources, we evaluated the effect of cell source derivation on villification with a grading scheme to approximate developmental stage. χ2 analysis compared the prevalence of TESI grade from each stem cell source. RNAscope probes detected genes known to direct villification and the development of the crypt-villus axis in mouse and human development. These were compared in TESI derived from various pluripotent and progenitor cell donor cell types as well as native human fetal and postnatal tissues. Prenatal and pluripotent cell sources form mature villus and crypt-like structures more frequently than postnatal donor sources, and there are alternate routes to villus formation. Human TESI recapitulates epithelial to mesenchymal crosstalk of several genes identified in development, with fetal and pluripotent donor-derived TESI arriving at villus formation following described developmental patterns. However, postnatal TESI is much less likely to form complete villus-crypt patterns and demonstrates alternate SHH/IHH and BMP4/FOXF1 signaling patterns. Grading TESI and other cellular constructs may assist discoveries to support future human therapies.NEW & NOTEWORTHY The small intestine can enhance its absorptive and digestive surface area through a process known as villification. Tissue-engineered small intestine achieves mature villification at varying levels of success between differing sources. We have developed a consistent grading schema of morphology and characterized it across multiple developmental pathways, allowing objective comparison between differing constructs and sources.


Assuntos
Células-Tronco Embrionárias , Intestinos/anatomia & histologia , Organoides , Engenharia Tecidual , Linhagem Celular , Humanos , Intestinos/fisiologia , Alicerces Teciduais
2.
Pediatr Surg Int ; 36(8): 875-882, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504125

RESUMO

INTRODUCTION: Recent studies suggest that some of the post-surgical morbidity in Hirschsprung disease (HSCR) is due to enteric nervous system structural defects in the proximal, ganglionated bowel that remains after surgery. We hypothesized that resection margin histology would predict intermediate-term outcomes in HSCR patients. METHODS: Following IRB approval, HSCR patients with rectosigmoid disease born between 2009 and 2016 were reviewed and tissue blocks were obtained for new analyses. Proximal resection margins were analyzed for ganglion size, Hu + neurons/ganglion, and % nitric oxide synthase (NOS) neurons/ganglion as compared to control (non-HSCR) patient samples. Chart reviews were performed for 1- and 2-year outcomes. Patients were contacted for survey to determine Rintala bowel function score. RESULTS: 45 patients had recto-sigmoid disease and were further analyzed. HSCR patients had significantly smaller individual ganglion size (4533 µm2, range 1744-16,287 vs. 6492 µm2, range 1932-30,838, p = 0.0192) and fewer HuC/D + neurons per ganglion (15, range 5.2-34 vs. 21, range 5.2-6.7, p = 0.0214). HSCR patients demonstrated a markedly increased percentage of NOS (relaxation neurotransmitter) neurons (50, range 22-85 vs. 37, range 16-80, p = 0.0266). None of the histology measures correlated with presence/absence of constipation at 1-2 year follow-up (p = NS). However, smaller ganglion size and higher percentage of NOS neurons correlated with decreased patient-reported quality of life (r = 0.3838, r = - 0.1809). CONCLUSION: 1-2 year follow-up may be insufficient to determine if resection margin histology correlates with outcomes. Patient-reported quality of life surveys, although limited in number, suggest that neurotransmitter imbalance at the resection margin may predict poor outcomes in HSCR patients. This study supports the concept that the ganglionated portion of the remaining colon post-surgery may not sustain normal bowel function.


Assuntos
Doença de Hirschsprung/cirurgia , Margens de Excisão , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Intestino Grosso/cirurgia , Masculino , Qualidade de Vida , Resultado do Tratamento
3.
Tissue Eng Part A ; 26(7-8): 411-418, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31696780

RESUMO

Introduction: Splenectomy is common after trauma or hematologic disease, and alters immune protection against pathogens, which may lead to fulminant infection with high mortality. Yet the spleen has demonstrable regenerative capacity and cells might be recovered and reimplanted at the time of injury or excision to avoid these risks. Methods: Tissue-engineered spleen (TESp) was generated from ActinGFP mice (mTESp) or human donor spleen (hTESp) through implantation of spleen organoid units (spleen OU), in NOD/SCID mice with concurrent splenectomy, on a biodegradable scaffold. Explants were evaluated and blood smears were obtained to investigate the presence of target cells or Howell-Jolly bodies, which are erythrocyte sequelae of asplenia. Results: TESp was generated from mouse (mTESp) and human (hTESp) donor cells with essential splenic components: red and white pulp with trabeculae. mTESp and hTESp demonstrated green fluorescent protein- or lamin-positive costaining with proliferating cell nuclear antigen, CD4, and CD11c, identifying proliferative donor cells and key immune components of the spleen of donor origin. Animals with hTESp and mTESP combined with splenectomy had significantly fewer Howell-Jolly bodies on blood smears than controls. Conclusion: TESp from mouse and human donor cells can be generated by 4 weeks and contains donor immune cells identified by CD4 and CD11c. TESp reduces postsplenectomy erythrocyte inclusions, indicating possible function. Impact Statement Overwhelming postsplenectomy infection is rare but highly mortal. Tissue-engineered spleen (TESp) was generated from murine (mTESp) and human (hTESp) donors and appeared histologically similar to native spleen. Both mTESp and hTESp demonstrated proliferative cells of donor spleen origin. Importantly, functional cells were demonstrated on imaging with a corresponding reduction in the number of erythrocyte inclusions in blood smears that are typically identified in patients with asplenia and indicate a lack of clearance by functional spleen tissue. Taken together, these findings indicate that this approach might be clinically relevant as a future human therapy.


Assuntos
Organoides/citologia , Baço/citologia , Animais , Modelos Animais de Doenças , Inclusões Eritrocíticas , Eritrócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Wistar , Baço/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G679-G691, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896968

RESUMO

Intestinal adaptation (IA) is a critical response to increase epithelial surface area after intestinal loss. Short bowel syndrome (SBS) may follow massive intestinal resection in human patients, particularly without adequate IA. We previously validated a model in zebrafish (ZF) that recapitulates key SBS pathophysiological features. Previous RNA sequencing in this model identified upregulation of genes in the Wnt and Hippo pathways. We therefore sought to identify the timeline of increasing cell proliferation and considered the signaling that might underpin the epithelial remodeling of IA in SBS. SBS was created in a ZF model as previously reported and compared with sham fish with and without exposure to monensin, an ionophore known to inhibit canonical Wnt signaling. Rescue of the monensin effects was attempted with a glycogen synthase kinase 3 inhibitor that activates wnt signaling, CHIR-99021. A timeline was constructed to identify peak cellular proliferation, and the Wnt and Hippo pathways were evaluated. Peak stem cell proliferation and morphological changes of adaptation were identified at 7 days. Wnt inhibition diminished IA at 2 wk and resulted in activation of genes of the Wnt/ß-catenin and Yes-associated protein (YAP)/Hippo pathway. Increased cytoplasmic YAP was observed in monensin-treated SBS fish. Genes of the WASP-interacting protein (WIP) pathway were elevated during Wnt blockade. In conclusion, cellular proliferation and morphological changes accompany SBS even in attempted Wnt blockade. Wnt/ß-catenin, YAP/Hippo pathway, and WIP pathway genes increase during early Wnt blockade. Further understanding of the effects of Wnt and YAP pathway signaling in proliferating stem cells might enrich our knowledge of targets to assist IA. NEW & NOTEWORTHY Intestinal adaptation is a critical response to increase epithelial surface area after large intestinal losses. Inhibition of Wnt/ß-catenin signaling impairs intestinal adaptation in a zebrafish model of short bowel syndrome. There is a subsequent upregulation in genes of the Yes-associated protein/Hippo and WIP pathway. These may be targets for future human therapies, as patients are salvaged by the compensation of increased intestinal epithelial surface area through successful intestinal adaptation.


Assuntos
Intestinos/fisiologia , Monensin/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Síndrome do Intestino Curto/metabolismo , Transativadores/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Adaptação Fisiológica , Animais , Proliferação de Células/fisiologia , Humanos , Ionóforos de Próton/farmacologia , Serina-Treonina Quinase 3 , Regulação para Cima , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Proteínas de Sinalização YAP , Peixe-Zebra
5.
Exp Physiol ; 103(12): 1633-1644, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232817

RESUMO

NEW FINDINGS: What is the central question of this study? Tissue-engineered small intestine was previously generated in vivo by immediate implantation of organoid units derived from both mouse and human donor intestine. Although immediate transplantation of organoid units into patients shows promise as a potential future therapy, some critically ill patients might require delayed transplantation. What is the main finding and its importance? Unlike enteroids, which consist of isolated intestinal crypts, short- and long-term cultured organoid units are composed of epithelial and mesenchymal cells derived from mouse or human intestine. Organoid units do not require added signalling molecules and can generate tissue-engineered intestine in vivo. ABSTRACT: Mouse and human postnatal and fetal organoid units (OUs) maintained in either short-term culture (2 weeks) or long-term culture (from 4 weeks up to 3 months) without adding exogenous growth factors were implanted in immunocompromised mice to form tissue-engineered small intestine (TESI) in vivo. Intestinal epithelial stem and neuronal progenitor cells were maintained in long-term OU cultures from both humans and mice without exogenous growth factors, and these cultures were successfully used to form TESI. This was enhanced with OUs derived from human fetal tissues. Organoid unit culture is different from enteroid culture, which is limited to epithelial cell growth and requires supplementation with R-Spondin, noggin and epidermal growth factor. Organoid units contain multiple cell types, including epithelial, mesenchymal and enteric nervous system cells. Short- and long-term cultured OUs derived from mouse and human intestine develop into TESI in vivo, which contains key components of the small intestine similar to native intestine.


Assuntos
Intestino Delgado/metabolismo , Organoides/metabolismo , Animais , Proliferação de Células/fisiologia , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Engenharia Tecidual/métodos
6.
J Surg Res ; 220: 182-196, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180181

RESUMO

BACKGROUND: Improving treatment for short bowel syndrome requires a better understanding of how intestinal adaptation is affected by factors like mechanoluminal stimulation. We hypothesized that in mice, luminal diversion via an ileostomy would drive adaptive changes similar to those seen in human intestine after diversion while offering the opportunity to study the immediate events after resection that precede intestinal adaptation. MATERIALS AND METHODS: With Institutional Animal Care and Use Committee approval, a distal ileostomy with a long distal Hartman's was created in 9- to 14-week-old C57/B6 mice (n = 8). Control mice only had a midline laparotomy without stoma formation (n = 5). A rim of tissue from the proximal stoma was resected as a historical control for the proximal segment. Postoperatively, mice received a high-protein liquid diet and water ad libitum. On day 3, tissue from both the proximal and distal limbs were collected for histologic and RNA analysis. Morphometric measures, immunofluorescent antigen detection, and RNA expression were compared with Student paired t-tests with a P value < 0.05 considered significant. RESULTS: At 3 d, survival for mice with an ileostomy was 87% and average weight loss was 12.5% of initial weight compared to 6.05% for control mice. Compared to the distal limb, the proximal limb in mice with an ileostomy demonstrated significantly taller villi with deeper and wider crypts. The proximal limb also had decreased expression of intestinal stem cell markers lgr5, bmi1, sox9, and ascl2. Fewer goblet and enteroendocrine cells per hemivillus were also noted in the proximal limb. In control mice, none of these measures were significant between proximal and distal ileum except for villus height. CONCLUSIONS: This new murine ileostomy model allows study of intestinal adaptation without intestinal anastomosis, which can be technically challenging and morbid.


Assuntos
Células-Tronco Adultas/fisiologia , Ileostomia , Intestinos/citologia , Modelos Animais , Síndrome do Intestino Curto , Adaptação Fisiológica , Animais , Feminino , Masculino , Camundongos
7.
Stem Cell Reports ; 9(3): 883-896, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28803915

RESUMO

Acquired or congenital disruption in enteric nervous system (ENS) development or function can lead to significant mechanical dysmotility. ENS restoration through cellular transplantation may provide a cure for enteric neuropathies. We have previously generated human pluripotent stem cell (hPSC)-derived tissue-engineered small intestine (TESI) from human intestinal organoids (HIOs). However, HIO-TESI fails to develop an ENS. The purpose of our study is to restore ENS components derived exclusively from hPSCs in HIO-TESI. hPSC-derived enteric neural crest cell (ENCC) supplementation of HIO-TESI establishes submucosal and myenteric ganglia, repopulates various subclasses of neurons, and restores neuroepithelial connections and neuron-dependent contractility and relaxation in ENCC-HIO-TESI. RNA sequencing identified differentially expressed genes involved in neurogenesis, gliogenesis, gastrointestinal tract development, and differentiated epithelial cell types when ENS elements are restored during in vivo development of HIO-TESI. Our findings validate an effective approach to restoring hPSC-derived ENS components in HIO-TESI and may implicate their potential for the treatment of enteric neuropathies.


Assuntos
Sistema Nervoso Entérico/fisiologia , Intestino Delgado/fisiologia , Crista Neural/citologia , Crista Neural/transplante , Engenharia Tecidual/métodos , Transcriptoma/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Enteroendócrinas/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroglia/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinapses/metabolismo
8.
Cell Mol Gastroenterol Hepatol ; 3(3): 367-388.e1, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462379

RESUMO

BACKGROUND & AIMS: For patients with short-bowel syndrome, intestinal adaptation is required to achieve enteral independence. Although adaptation has been studied extensively in animal models, little is known about this process in human intestine. We hypothesized that analysis of matched specimens with and without luminal flow could identify new potential therapeutic pathways. METHODS: Fifteen paired human ileum samples were collected from children aged 2-20 months during ileostomy-reversal surgery after short-segment intestinal resection and diversion. The segment exposed to enteral feeding was denoted as fed, and the diverted segment was labeled as unfed. Morphometrics and cell differentiation were compared histologically. RNA Sequencing and Gene Ontology Enrichment Analysis identified over-represented and under-represented pathways. Immunofluorescence staining and Western blot evaluated proteins of interest. Paired data were compared with 1-tailed Wilcoxon rank-sum tests with a P value less than .05 considered significant. RESULTS: Unfed ileum contained shorter villi, shallower crypts, and fewer Paneth cells. Genes up-regulated by the absence of mechanoluminal stimulation were involved in digestion, metabolism, and transport. Messenger RNA expression of LGR5 was significantly higher in unfed intestine, accompanied by increased levels of phosphorylated signal transducer and activator of transcription 3 protein, and CCND1 and C-MYC messenger RNA. However, decreased proliferation and fewer LGR5+, OLFM4+, and SOX9+ intestinal stem cells (ISCs) were observed in unfed ileum. CONCLUSIONS: Even with sufficient systemic caloric intake, human ileum responds to the chronic absence of mechanoluminal stimulation by up-regulating brush-border enzymes, transporters, structural genes, and ISC genes LGR5 and ASCL2. These data suggest that unfed intestine is primed to replenish the ISC population upon re-introduction of enteral feeding. Therefore, the elucidation of pathways involved in these processes may provide therapeutic targets for patients with intestinal failure. RNA sequencing data are available at Gene Expression Omnibus series GSE82147.

9.
PLoS One ; 11(3): e0151396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978773

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. METHODS: VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. RESULTS: Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. CONCLUSIONS: Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal dysfunction or disease.


Assuntos
Duodeno/metabolismo , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Focos de Criptas Aberrantes/genética , Animais , Animais Lactentes , Síndrome de Vazamento Capilar/genética , Divisão Celular , Células Cultivadas , Doxiciclina/farmacologia , Duodeno/irrigação sanguínea , Duodeno/citologia , Duodeno/crescimento & desenvolvimento , Regulação da Expressão Gênica , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Microvilosidades/ultraestrutura , Neovascularização Fisiológica/genética , Organoides , Proteínas Recombinantes de Fusão/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...